K-Means Cluster Analysis for Image Segmentation
نویسندگان
چکیده
Does K-Means reasonably divides the data into k groups is an important question that arises when one works on Image Segmentation? Which color space one should choose and how to ascertain that the k we determine is valid? The purpose of this study was to explore the answers to aforementioned questions. We perform K-Means on a number of 2-cluster, 3cluster and k-cluster color images (k>3) in RGB and L*a*b* feature space. Ground truth (GT) images have been used to accomplish validation task. Silhouette analysis supports the peaks for given k-cluster image. Model accuracy in RGB space falls between 30% and 55% while in L*a*b* color space it ranges from 30% to 65%. Though few images used, but experimentation proves that K-Means significantly segment images much better in L*a*b* color space as compared to RGB feature space.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملClustering techniques in colour image segmentation
In this paper, five clustering techniques (k-means, ISODATA, merging, splitting and mean shift techniques) used for colour image segmentation are presented. Two heuristic evaluation methods (cluster validity measure VM and quality function Q) are applied. We show that evaluation functions VM and Q can be very helpful in search of best segmentation results. The best results came from k-means, me...
متن کاملThe Survey on Various Clustering Technique for Image Segmentation
Image segmentation places an important role in image processing. This segmentation process can be done using various techniques like clustering, thresholding, edge detection and region extraction. This paper gives introduction to image processing operations and clustering process. Then the overview and algorithmic process of each clustering technique such as K-Means clustering, Kernel K-Means c...
متن کاملImplementation of Image Segmentation for Natural Images using Clustering Methods
Natural image is one of the fundamental problems in image processing and Computer Vision. Image segmentation is the process of partitioning an image into multiple meaningful regions or sets of pixels with respect to a particular application. Image segmentation is a critical and essential component of image analysis system. In literature, there are many image segmentation techniques. One of the ...
متن کامل